Проекты умного дома и интернета вещей на основе Arduino и NodeMCU
Smart Home

       
Smart Home Arduino 1. Понятие Интернета вещей для Умного дома

Умный дом – это жилой  дом, организованный для  удобства проживания людей при помощи различных высокотехнологичных устройств.
Умный дом понимает  конкретные ситуации, происходящие в здании, и соответствующим образом на них реагирует по  заранее выработанным алгоритмам. Подробнее ...
 
2. Обзор набора Интернета вещей для Умного дома

Откроем наш набор и рассмотрим его содержимое. Самый главный компонент любой "умной" системы – его контроллер. Контроллер предназначен для получения информации и управления "умным" домом. В нашем наборе два контроллера! Это плата Arduino Mega и модуль NodeMcu v3 Lua WI-FI ESP8266 CH340. Вы можете выбрать любой из них. Подробнее ...
 
arduino ide

3. Установка программного обеспечения

Разработка собственных приложений на базе плат, совместимых с архитектурой Arduino, осуществляется в официальной бесплатной среде программирования Arduino IDE. Среда предназначена для написания, компиляции и загрузки собственных программ в память микроконтроллера. Подробнее ...
 

4.1. Подключение датчика влажности и температуры DHT11 (DHT22)

Плата модуля содержит основные компоненты: датчик температуры и относительной влажности DHT22 в белом корпусе, светодиод индикации питания и вилка соединителя. Внутри DHT22 небольшая плата с компонентами: емкостным датчиком влажности, терморезистором, имеющим отрицательную характеристику и микроконтроллером. Подробнее ...

4.2. Подключение цифровой датчика температуры DS18B20 (RI002)

Для измерения температуры "умного" дома в набор включен датчик температуры RI002. Это хорошо известный цифровой датчик температуры DS18B20 водонепроницаемом корпусе из нержавейки. Приемущества водонепроницаемого корпуса – возможность измерить температуру в неблагоприятной для микросхем среде: в почве, на дожде или даже в аквариуме. Подробнее ...
 
FC-28 4.3. Подключаем датчик влажности почвы

Домашний уют — это атмосфера тепла в вашей квартире, желание возвращаться туда после трудного дня. Уют и комфорт в вашем доме оказывают непосредственное влияние на ваше самочувствие и настроение. Необходимое условие в создании уюта имеет использование комнатных цветов. Они доступны каждому из нас и при этом лучше любой мебели помогут создать уют и комфорт, и как ни что другое просто вдохнуть в ваш дом чистую энергию. Подробнее ...
 
T1592P 4.4. Как подключить датчик уровня воды

Одна из главных задач умного дома — заботиться о своей сохранности, не допускать взломов, пожаров, затоплений, и прочих повреждений. Вот о защите от протечек и затопления мы сегодня и поговорим. Точнее сказать, пока только об обнаружении протечек. Подробнее ...
 
mq-2 4.5. Определение концентрации углеводородных газов с помощью датчика MQ-2

Одна из самых важных задач в вопросе безопасности умного дома –обнаружение утечки газа. Для того, чтобы плата Arduino успешно решала задачи такого рода, нужно подключить к ней датчик газа MQ-2. Датчик MQ-2 определит концентрацию углеводородных газов (пропан, метан, н-бутан), дыма (взвешенных частиц, являющихся результатом горения) и водорода в окружающей среде. Датчик можно использовать для обнаружения утечек газа и задымления. Подробнее ...
 
mq7 4.6. Определение концентрации угарного газа с помощью датчика MQ-7

Основным источником выделения угарного гоза СО, является сгорание углеродного топлива при недостаточном количестве кислорода. Углерод "не догорает" и вместо углекислого газа CO2, в атмосферу выбрасывается угарный газ CO. Источником СО в доме, при неправильной эксплуатации, могут выступать дровяные печи, газовые конфорки, газовые котлы и прочая отопительная техника, работающая на углеродном топливе. В выхлопе бензинового двигателя автомобиля содержание СО может быть до 3%. Подробнее ...
 
4.7. Подключение модуля датчика огня

Модуль датчика огня Flame Sensor позволяет фиксировать наличие пламени или другого источника огня в прямой видимости перед собой.
Датчик имеет 4 контакта (питание, земля, аналоговый вывод и цифровой вывод, срабатывание которого (выдачу сигнала HIGH) можно настроить с помощью потенциометра).Номинальное напряжение питания – 5 В. Сенсор определяет наличие огня в углу чувствительности 60°. Показания представляются в виде аналогового сигнала. Подробнее ...
 
4.8. Подключение датчика присутствия HC-SR501

Рассмотрим еще один датчик, связанный с обеспечением безопасности для умного дома. Это модуль датчика присутствия HC-SR501 на основе пироэлектрического эффекта. Состоит из самого PIR-датчика (Pyroelectric (Passive) InfraRed sensor) и схемы управления. Такие датчики часто используются в охранных системах и в быту для обнаружения движения в помещении. Подробнее ...
 
5. Отображение показаний и индикация состояний датчиков

Данные, получаемые с датчиков, мы выводили в монитор последовательного порта Arduino. Смотреть показания датчиков через последовательный порт не совсем удобно, нам необходимы более удобные устройства для отображения данных. Подробнее ...
 
5.1. Дисплей TFT 2.4" Shield 240x320

В качестве экрана для отображения показаний с датчиков мы будем использовать 2.4" Shield 240x320. Основное применение дисплея – отображение простой графики и символьных данных с использованием 16 цветов. Подробнее ...
 
5.2. Вывод показаний датчиков на TFT 2.4" Shield 240x320 для Arduino MEGA

Подключим TFT Shield к Arduino MEGA. Для использования библиотеки SWTFT с платой Arduino Mega, необходимо внести изменения в файл SWTFT.cpp . Подробнее ...
 
5.3. Светодиодная индикация и звуковая сигнализация  о критических параметрах датчиков для Arduino MEGA

Введем светодиодную индикацию и звуковую сигнализацию, чтобы информировать вас о наступлении неблагоприятных климатических условиях или условиях, представляющих опасность для дома (пожар, утечка газов). Подробнее ...
 
5.4. Расширение цифровых портов для NodeMCU ESP8266 с помощью микросхемы MCP23017

Использование микросхемы MCP23017 позволит расширить количество цифровых контактов модуля NodeMCU на 16 и позволит организовать светодиодную индикацию и звуковую сигнализацию о критических параметрах датчиков. Подробнее ...
 
5.5. Светодиодная индикация и звуковая сигнализация  о критических параметрах датчиков для NodeMCU

Для светодиодной индикации будем использовать обычные светодиоды, которые подсоединим к микросхеме расширителя входов  MCP23017 (банку A выводы GPA0- GPA7). Для звуковой индикации будем использовать небольшой динамик. Подробнее ...
 
6. Управление исполнительными устройствами

В нашем умном доме нам потребуются исполнительные устройсва для управление освещением умного дома, вентилятором для создания прохлады, увлажнителем для управления влажностью воздуха, помпой для полива растений, возможно для автоматического открытия/закрытия входных и гаражных дверей.
Рассмотрим организацию управления исполнительными устройствами нашего умного дома с контроллеров Arduino Mega и модуля NodeMCU. Подробнее ...
 
6.1. Подключение блока реле для управления исполнительными устройствами

Для управления электроприборами пользуются различными клавишными выключателями и тумблерами. Чтобы управлять такими электроприборами с помощью микроконтроллера существует специальный тип выключателей — электромеханические реле. В набор ИНТЕРНЕТ ВЕЩЕЙ ДЛЯ УМНОГО ДОМА включен Relay Shield. Подробнее ...
 
6.2. Подключение блока реле к плате Arduino MEGA

ассмотрим подключение Eelay Shield к плате Arduino MEGA.  Relay Shield мы будем использовать для включения/выключения света для освещения растений, вентилятора, насоса для полива растений. Включения/выключения вентилятора и помпы будет осуществляться в зависимости от значений температуры воздуха (вентилятор) и влажности почвы (мембранный вакуумный насос. Подробнее ...
 
6.3. Отображение данных о статусе исполнительных устройств на экране дисплея и управление с помощью сенсора

В предыдущей главе мы рассматривали вывод данных, получаемых с датчиков на экран TFT 2.4" Shield. Теперь нам необходимо на экран дисплея выводить и данные о состоянии исполнительных устройств, подключенных к реле. Для этого нам необходимо формировать другие экраны, а также главный экран. Как мы будем делать переходы между экранами? Подробнее ...
 
6.4. Подключение блока реле к модулю NodeMCU

Теперь рассмотрим подключение Relay Shield к модулю NodeMCU.  Relay Shield мы будем использовать также – для включения/выключения света для освещения растений, вентилятора, насоса для полива растений. Светом будем управлять с помощью кнопки, включения/выключения вентилятора и помпы будет осуществляться в зависимости от значений температуры воздуха (вентилятор) и влажности почвы (мембранный вакуумный насос. Подробнее ...
 
6.5. Управление блоком реле по ИК-каналу. Пример с модулем NodeMCU 

В набор включен инфракрасный пульт дистанционного управления с платой инфракрасного приёмника.
Это позволяет нам организовать управление исполнительными устройствами, подключенными к Relay Shield с помощью ИК пульта. После подключения ИК-приёмника необходимо узнать коды клавиш пульта, которые мы будем использовать для управления исполнительными устройствами. Подробнее ...
 
6.6. Организация доступа в дом с помощью RFID-модуля для Arduino MEGA

Идентификация объектов производится по уникальному цифровому коду, который считывается из памяти электронной метки, прикрепляемой к объекту идентификации. Считыватель содержит в своем составе передатчик и антенну, и посылает в эфир электромагнитные сигналы определенной частоты. RFID-метки "отвечают" собственным сигналом, который содержит информацию об идентификационном номере данной метки и данные об объекте, оснащенном данной меткой. Подробнее ...
 
7. Создание будильников для запуска исполнительных устройств по расписанию

В предыдущей главе мы рассмотрели управление исполнительными устройствами "умного дома" либо с помощью команд, отправляемых по нажатии кнопки или нажатии по кнопке на сенсорном дисплее, либо при наступлении определенных климатических параметров, данные о которых мы получаем с датчиков.
Но очень часто исполнительные устройства требуется включать/выключать по расписанию: включение освещения перед домом при наступлении сумерек, полив растений по расписанию, выключение наружного освещения днем и т.д. Подробнее ...
 
7.1. Подключение модуля DS3231 к плате Arduino MEGA. Вывод времени на экран дисплея

Рассмотрим подключение модуля часов реального времени DS3231 к плате Arduino MEGA.  Используем выводы Arduino MEGA 20 (SDA) и 21(SCL). Сначала добавим вывод времени на экран дисплея (главное меню). Для программирования нам понадобятся Arduino-библиотеки Wire (встроенная в Arduino IDE), Time и DS1307RTC. В цикле будем получать данные о текущем времени (часы, минуты) с модуля DS3231 и выводить на экран дисплея. Подробнее ...
 
7.2. Добавление срабатывания устройств Умного дома  по будильнику (для Arduino MEGA)

После подключения модуля RTC, мы можем организовать запуск исполнительных устройств "умного дома" по расписанию. Для этого создадим объект, описывающий будильник. В цикле loop() нашего скетча добавим проверку наступления события по расписанию и необходимых действий при наступлении события.
Подробнее ...
 
7.3. Подключение модуля DS3231 к модулю NodeMCU

Рассмотрим подключение модуля DS3231 к модулю NodeMCU. У нас в проекте есть устройство, подключенное к модулю NodeMCU по протоколу I2C – это микросхема расширителя входов  MCP2301. Подсоединяем к контактам NodeMCU D3 (GPIO0) – SCL и D4(GPIO2). Подробнее ...
 
7.4. Добавление срабатывания устройств Умного дома  по будильнику (для NodeMCU)

После подключения модуля RTC, мы можем организовать запуск исполнительных устройств "умного дома" по расписанию. Для этого создадим объект, описывающий будильник. Подробнее ...
 
  8. Организация подключения к сети Интернет с помощью модуля SIM800L

В предыдущих главе мы рассмотрели мы сделали большие шаги построения "умного дома" –  оснастили его датчиками и исполнительными устройствами и создали и обеспечили определенную степень автоматизации для создания комфорта и безопасности. Теперь пришло время сделать наш "умный дом" устройством IoT (Интернета вещей), чтобы получить доступ к нему для мониторинга и управления из любой точки мира по сети интернет. Организуем доступ контроллеров нашего дома к сети интернет. Подробнее ...
 
9. Протокол MQTT – простой протокол для Интернета вещей

Наконец мы готовы к тому, чтобы устройства нашего "умного" дома стали устройствами Интернета вещей, что позволит получать данные с датчиков и управлять исполнительными устройствами нашего "умного дома" через интернет из любой точки мира. В качестве устройства управления удобнее всего использовать мобильный телефон. Нас интересует получение данных на телефон и управление исполнительными устройствами с телефона. Подробнее ...
 
9.1. IoT Manager - управление Умным домом через мобильное приложение

IoT Manager – это мобильное приложение для телефонов и планшетов, совмещающего в себе табло для отображения данных с датчиков и пульт для управления исполнительными устройствами. Существуют версии для Android и iOS, которые можно скачать в GooglePlay и AppStore www.iotmanager.ru. Но прежде, чем скачивать приложение, определимся с брокером. В качестве брокеров выбираем сервис CloudMQTT.com (www.cloudmqtt.com), в котором можно создать бесплатный аккаунт. Подробнее ...
 
9.2. Передача данных брокеру (тестовый пример)

IoTManager не только подписан на темы, но также выступает в роли publisher – публикует данные в темы. Это значения слайдеров и статус кнопки. Эти данные плата NodeMCU, подписанная в качестве subscriber на эти темы, может использовать для управления, подключенными к плате устройствами. Подробнее ...
 
9.3. Публикация данных датчиков в темы брокера на примере NodeMCU

Рассмотрим подоробнее отправку данных с датчиков нашего умного дома брокеру. Будем отправлять брокеру данные с двух датчиков DHT22 и DS18B20. Правки осуществляем в скетче из предыдущей главы. Устанавливаем количество виджетов для отображения по количеству датчиков. Подробнее ...
 
9.4. Управление из IoT Manager исполнительными устройствами на плате NodeMCU

В данной главе рассмотрим управление исполнительными устройствами, подключенными к NodeMCU, из мобильного приложения IoT Manager. В скетч для NodeMCU необходимо внести следующие изменения. Изменяем количество виджетов для отображения (увеличение на количество исполнительных устройств). Подробнее ...
 
   
   
   
   
   
   

Вверх